Using Julia for Research on Electric Power Systems

Dr. Efthymios Karangelos

1st Athens Julia Meetup National Technical University of Athens 03 September 2024

CV overview

Education 2005 Diploma in Mechanical Engineering, NTUA.

- 2007 M.Sc. with Distinction in Power System Engineering & Economics. University of Manchester.
- 2012 Ph.D. in Electrical Engineering, University of Manchester.

- Positions 2012 ... Senior Researcher @ Université de Liège, School of Electrical Engineering & Computer Science
 - with Prof. L. Wehenkel.
 - 2022 ... Research Associate (part-time) @ National Technical University of Athens, School of Electrical Engineering - with Prof. A. Papavasiliou.

Research Agenda

Development of novel techno-economic concepts, methods and tools for cyber-physical electric power system planning and operation.

Areas of interest & expertise

- Reliability, resilience and risk management.
- Power system economics & electricity markets.
- Stochastic optimization under uncertainty.
- Machine learning applications.

Why am I here?

- Using Julia & JuMP since 2015 for all my research/teaching activities:
 - proof-of-concept implementation for research projects.
 - real-life implementations.
- Experimental contribution in Power Systems specific Julia packages.
- Not a coder/software developer.

Presentation Outline

- 1. A brief introduction to Electric Power Systems
- 2. PowerModels.jl and other notable packages
- 3. Example applications

The modern Electric Power System

A fascinating technical challenge

► The largest, most complex man-made machine.

At the center of today's societal needs

Access to clean, secure and affordable electricity as a human right.

The European Interconnected High-Voltage Grid

- \sim 3k 5k large power plants (\geq 100 MW).
- ~ 20k nodes.
- \sim 30k branches (*i.e.* lines and transformers).
- \sim 30 Transmission System Operators (TSOs).
- \sim 20-30% of your Electricity Bill.

Interactive map available from ENTSO-e.

Who is who?

D. S. Kirschen [1]

Technical feasibility (μ s – s)

▶ Must ensure that power generated \approx power consumed.

Technical security (s - min)

▶ Must also keep currents & voltages within secure/acceptable ranges.

Technical feasibility (μ s – s)

 \blacktriangleright Must ensure that power generated \approx power consumed.

Economic Optimality (min – hrs)

Must also be using the cheapest generation resources.

Technical security (s - min)

▶ Must also keep currents & voltages within secure/acceptable ranges.

Technical feasibility (μ s – s)

▶ Must ensure that power generated \approx power consumed.

Socio-Economic optimality (hrs – yrs)

▶ Must also decarbonize, renew/expand infrastructure etc..

Economic Optimality (min – hrs)

Must also be using the cheapest generation resources.

Technical security (s - min)

Must also keep currents & voltages within secure/acceptable ranges.

Technical feasibility (μ s – s)

▶ Must ensure that power generated \approx power consumed.

What types of computational applications do we need?

Modeling

Assessment

Control & optimization

E.g.: Power Flow Modeling

What?

Given power generations, loads and the grid properties compute the nodal voltages and branch flows.

How?

- ► Solve a set of non-linear equations (Kirchoff Current and Voltage Laws)
 - Newton-Raphson or Gauss-Seidel algorithms typically used.
 - Commercial software can handle grids of thousand nodes in seconds.

E.g.: N-1 Security Assessment

What?

Given power generations, loads and the grid properties check if any single component failure leads to unacceptable flows/voltages.

How?

- Create alternative grid snapshots corresponding to each component failure scenario.
- Solve the corresponding power flow problems and.
- Compare results against applicable limits.

E.g.: N-1 Security-Constrained Optimal Power Flow

What?

Given power generations, loads and the grid properties ensure that no single component failure leads to unacceptable flows/voltages.

How?

- Integrate the power flow equalities and the applicable limits as the constraints of a (non-linear) optimization problem.
- Choosing power generation dispatch and voltage settings so as to minimize the system operating cost.

Presentation Outline

- 1. A brief introduction to Electric Power Systems
- 2. PowerModels.jl and other notable packages
- 3. Example applications

PowerModels.jl

A Julia package for Steady-State Network Optimization

- ▶ Development lead by C. Cofrin et al. [2] @ LANL.
- Early versions appeared around 2016/17.
- ► Today it is the reference EPS package (v.0.21.2).
- ► Find out more on <u>YouTube</u>.

PowerModels.jl

Data Formats

- MATPOWER
- PSS/E
- json

Power Flow Models

- Full AC (Non-linear)
- DC Approximation (Linear)
- 2nd Order Conic Relaxation (SOCP)

Solvers

- GUROBI
- CPLEX
- IPOPT

- And many others not listed here.
- Main idea is to decouple the data, from the power flow model and these two from the solver.
- Or rather, combine & conquer.

How do I use PowerModels.jl?

- ► Parser functionality is always my choice to bring any power grid data in the Julia environment.
- ▶ I write my own Power Flow/Optimal Power Flow formulation with similar/additional functionalities as needed.
 - It is always important to understand the model you are using.
 - Using built-in models for validation/verification.
 - Also relying on JuMP to state my optimization problems.
- ▶ Stay-tuned for some examples in the 3rd part of the slides.

The PowerModels.jl solar system

PowerModelsDistribution.il PowerModelsStability.jl PowerModelsProtection.il PowerModelsITD.il HvdroPowerModels.il PowerModelsACDC.il PowerModelsRestoration.il PowerModelsGMD.il PowerModelsAnalytics.jl PowerModelsAnnex.il

3-phase Unbalanced Distribution grids Distribution grids with Stability constraints Fault studies Integrated Transmission & Distribution grids SDDP for HydroThermal MultiStage Optimization Hybrid AC/DC systems Power System Restoration tasks Geomagnetic disturbances Visualisation of grids and results Exploratory works in progress (anything goes!)

Other notable Packages

PowerSystems.jl

PowerSimulations.jl

PowerSimulationsDynamics.jl

POMATO

<u>PandaModels</u>

Alternative Power Grid data parsing framework

Integrated Resource Planning & Market simulator

Time-domain simulations

Power Market simulator (python/Julia)

Parser from the PandaPower format

Other notable Packages

PowerSystems.jl

PowerSimulations.jl

PowerSimulationsDynamics.jl

POMATO

PandaModels

Alternative Power Grid data parsing framework

Integrated Resource Planning & Market simulator

Time-domain simulations

Power Market simulator (python/Julia)

Parser from the PandaPower format

* I have not used/tested every single Package mentioned here...

Presentation Outline

- 1. A brief introduction to Electric Power Systems
- 2. PowerModels.jl and other notable packages
- 3. Example applications

Reliability management

► Making decisions under uncertainty, from long-term system development to real-time system operation.

► A reliability criterion sets the basis to determine whether or not the system reliability is acceptable.

Karangelos & Wehenkel [3]

Horizon: (5' ∼ 15')

- Power injections assumed relatively predictable.
- ► Uncertainty on:
 - \rightarrow occurrence of contingencies $c \in C$;
 - \rightarrow behavior of post-contingency corrective controls $b \in \mathcal{B}$.
- Decisions on Active Power Generation:
 - \rightarrow apply preventive (pre-contingency) control $u_0 \in \mathcal{U}_0(x_0)$?
 - \rightarrow prepare post-contingency corrective controls $u_c \in \mathcal{U}_c(u_0) \, \forall c \in \mathcal{C}$?

Transitions of the system state

Karangelos & Wehenkel [3]

 w_0 : spatial/temporal correlation in transition probabilites.

Dr. E. Karangelos 21/32 03/09/2024

Karangelos & Wehenkel [3]

- AC power flow (rectangular coordinates);
- voltage magnitude bounds per node;
- voltage angle difference & apparent power flow bounds per branch;
 - → less restrictive for the intermediate problem stage;
- active & reactive power generation bounds per unit;
 - \rightarrow ramping restrictions between preventive & corrective active power dispatch;
- voltage set-points per unit;
- no loss of load.

Chance-constrained SCOPF

Karangelos & Wehenkel [3]

$$\min_{\mathbf{u}\in\mathbf{U}} CP(x_0,u_0) + \sum_{c\in\mathcal{C}} \pi_c \cdot CC(x_0,u_0,c,u_c); \tag{1}$$

$$h_0(x_0,u_0)\leq 0;$$
 (2)

$$\mathbb{P}\left\{ h_c(x_c^b, u_c) \leq 0 \mid (c, b) \in \mathcal{C} \times \mathcal{B} \right\} \geq 1 - \varepsilon; \tag{3}$$

$$\mathbf{u} \in \mathbf{U} \equiv \{u_0 \in \mathcal{U}_0(x_0); u_c \in \mathcal{U}_c(x_0, u_0, c) \forall c \in \mathcal{C}\}. \tag{4}$$

- Reformulated as a Mixed-Integer Non-Linear Programming Problem.
- Algorithmic solution approach implemented in Julia.

Solution principle

Karangelos & Wehenkel [3]

▶ Any chosen decision partitions the contingency set ...

Solution principle

Karangelos & Wehenkel [3]

▶ Any chosen decision partitions the contingency set ...

+ we get a lower-bound for the probability of interest;

$$\mathbb{P}\Big\{\dots\Big\} \geq 1 - \left(\sum_{c \in \mathcal{C}_{\mathcal{X}}} \pi_c + \sum_{c \in \mathcal{C}_{\mathcal{C}}} \pi_c \cdot \pi_c^f\right),\,$$

 $e.g.,\,\mathbb{P}\Big\{\dots\Big\}\geq 1$ when all cntgcies are in preventive only.

Algorithmic decomposition overview

Karangelos & Wehenkel [3]

In a nutshell

- 1 update decisions vs deterministic constraints;
- 2 evaluate post-contingency violation probability;
- 3 update contingency subsets;
 - preventive only;
 - preventive & corrective;
- √ stop when reliability target is OK.

Algorithm components

Karangelos & Wehenkel [3]

Deterministic SCOPF

▶ JuMP/IPOPT implementation *vs* given contingency subsets;

Contingency analysis OPFs

- examining both the working & failing behavior of corrective controls;
- per contingency & cc behavior, minimization of fictitious active/reactive power injections;
- returns a zero optimal value for feasible OPF instances;
- non-zero objective indicative of the magnitude of constraint violations implied by the contingency & cc behavior.

The test-case

Karangelos & Wehenkel [3]

- ► 111 single component outages;
- ► Corrective control failure probability assumed 0.01.

Chance-constrained SCOPF ($\varepsilon = 10^{-5}$)

Karangelos & Wehenkel [3]

Filter	Probability	Feasibility	Risk
Total Cost (\$) Explicit Contingencies	892.37 13	896.78 5	892.37 7
Chance level	9.85 · 10 ⁻⁶	$5.28 \cdot 10^{-6}$	$9.85 \cdot 10^{-6}$

Dr. E. Karangelos 28/32 03/09/2024

Chance-constrained SCOPF ($\varepsilon = 10^{-5}$)

Karangelos & Wehenkel [3]

Tertiary Voltage Control Optimization

Donnon, Cuvelier, Karangelos et al. [4]

- Goal is to keep Nodal Voltages acceptable.
- By choosing Voltage Setpoints for a subset of Generators.
- ACOPF benchmark implementation as per the specification of the French System Operator.
- Available on GitHub.

Real-life Forecasting Application at IPTO (Greek TSO)

- Day-ahead forecasting of the losses on the Greek Transmission system.
- Combining power flow & ridge-regression for statistical post-processing.
- Delivered Julia implementation still in daily service (since 2020).

Thank you for your attention!

ekarang@gmail.com

References I

- [1] D. Kirschen, Power Systems: Fundamental Concepts and the Transition to Sustainability. Wiley, 2024. [Online]. Available: https://github.com/Power-Systems-Textbook
- [2] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, "Powermodels.jl: An open-source framework for exploring power flow formulations," in 2018 Power Systems Computation Conference (PSCC), June 2018, pp. 1–8.
- [3] E. Karangelos and L. Wehenkel, "An iterative AC-SCOPF approach managing the contingency and corrective control failure uncertainties with a probabilistic guarantee," <u>IEEE Transactions on Power Systems</u>, vol. 34, no. 5, pp. 3780–3790, 2019.
- [4] B. Donon, F. Cubelier, E. Karangelos, L. Wehenkel, L. Crochepierre, C. Pache, L. Saludjian, and P. Panciatici, "Topology-aware reinforcement learning for tertiary voltage control," <u>Electric Power Systems Research</u>, vol. 234, p. 110658, 2024.