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Probabilistic Security Constrained Optimal Power Flow (pSCOPF)
» Recent motivation in the growth of operational & planning uncertainties [1];
> Risk-based operation:
» beyond the N-1 contingency list;
» modeling & managing contingency probability & potential impact.
» Planning under uncertainty:
» beyond the point-forecast of power injections;

P accomodating uncertainty from renewable power generation.

P In both classes, problem complexity escalates vs the deterministic standard.
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Machine Learning (ML)

> Recent boom driven by emergence of new ideas & 1§,

techniques, enhanced computational infrastructure  i=
and sharing culture;

10

0

S
°

> Early power system applications date back to 70s and 80s in the context of
security assessment & control;

> Since then, significant progress in terms of academic publications but moderate
adoption in industrial practice;

» Untapped potential to overcome outstanding challenges for pSCOPF?
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Part |
» Challenges towards tractable, scalable & interpretable probabilistic SCOPF.

Part 1l

» Ongoing research ideas on leveraging machine learning techniques.
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Our target problem: multi-period planning under uncertainty uLIEGE

At some moment tg, in advance of a planning horizon [7... T]

» Choosing a planning decision v, € U/, in advance,

» while anticipating exogenous uncertainties w(7,..., T) € ¥V and modeling the
recourse actions u,(7,..., T) reacting to them during the horizon,

> so that the system will be functional during [ ... T], with high enough probability.
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The classical (single period, deterministic) SCOPF problem tLIEGE
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» Horizon short enough to assume power injections & demands known with
certainty (~ 5 — 30');

> uncertainty limited to a finite set of credible contingencies;

* contingency set expresses desirable level of confidence in maintaining functionality;

> scope is to choose preventive (pre-contingency) controls in advance;

-+ while modeling corrective (post-contingency) control possibiliies per contingency;

> technical constraints on the system (steady-state) behavior through all credible
pre- to post-contingency trajectories.
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Already a difficult and large scale MINLP % * LIEGE
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Non-linear, non-convex steady-state AC power flow equations;

pre- /post-contingency constraints on state & decision variables (e.g. loss of load
is unacceptable);

continuous (e.g gen.dispatch) and discrete (e.g. topology) controls;

conditional (rule-based) behavior of active components (e.g., PSTs, generation
PV-PQ switching, etc.);

full statement can turn out as large & complex as one wishes . ..

indicative single-period European instance has ~ 300M variables, 400M
inequalities, 200 M equalities;

in practice the goal is a "good feasible” rather than a “globally optimal” solution.
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Determinstic SCOPF state-of-the-art 1: LIEGE
Iterative approach

» Master SCOPF vs a few filtered
contingencies & constraints;

—> | Master SCOPF |

P contingency analysis evaluates the fitness v
of SCOPF outcome;

Contingency Analysis
(OPF/PF)

DDDQDDD

> if NOK, filtering grows the set of

contingencies & constraints seen by the
master SCOPF;

Contingency Filtering

» until there is no post-contingency state

. . . . Feasible Solution?
with constraint violations.
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Why decompose? % # LIEGE
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Tractability

v opportunities for parallelization, network reduction, advanced filtering, etc.;

v reported solutions in meaningful computational time [2].

Scalability

V" binding contingencies/constraints grow moderately with the system size.

Interpretability

v cause-effect associations between filtered contingencies/constraints and updates
on decision variables.
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The multi period stochastic problem components tLIEGE
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Up[T,..., Tl space of candidate planning decisions u,
(e.g., generation dispatch, topology, protection settings, etc.);

Wir,..., T]: space of exogenous uncertainty trajectories
(i.e., renewable generation, demand, component failures, etc.);

ur(t, up, w(t)):  given functional form of the recourse control policy
(e.g., control room operation, 12Y+22" frequency response, etc.);

ha(up, tr, w): acceptability of system trajectories through [7,..., T]
(e.g., given current flow limits, voltage limits, etc.);

Co(4): first-stage cost function of a choice of wp.

(v -): recourse cost as implied by up, and 4.
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Probabilistic multi-period SCOPF statement tLIEGE

upeY,
P P t=71

-
min [Cp (up) + AEyy {Z cr (Up, tr(t, up, W(t)))}] )

subject to (chance constraint):

Py {ha(upa ur, W) > ﬁa} >1-—e

P> Recourse cost expectation balanced with planning decision cost;
» chance-constraint to keep the system functional with high enough probability;

» can be tuned from highly risk averse to purely enonomic objective.
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Probabilistic multi-period SCOPF statement u LIEGE

T
min [Cp (Up) + )\EW {Z Cr (Upa l.J,(t, Up, W(t)))}] 9

upEU)p P
subject to:

Py {ha(upv Ur, W) > ha} >1-e

» Chance-constraint & objective not directly decomposable over trajectories;

> recourse cost expectation challenging wrt “feasibility over optimality” approach.
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Chance-constrained SCOPF state-of-the-art l: LIEGE
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Analytical reformulation [3]

» Individual (i.e., per constraint) violation probability limits reformulated as tighter
deterministic constraint margins to accommodate injection uncertainty;

Scenario theory [4, 5]
» Sample average approximation with joint constraint violation probability

guarantee,

» reformulation of chance-constraint via appropriate uncertainty bounds;
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Chance-constrained SCOPF state-of-the-art 1: LIEGE
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Analytical reformulation [3]

» Individual (i.e., per constraint) violation probability limits reformulated as tighter
deterministic constraint margins to accommodate injection uncertainty;

* needs linear impact of uncertainty on the system operation (e.g., 15 order Taylor

expansion for AC power flow).

Scenario theory [4, 5]
» Sample average approximation with joint constraint violation probability
guarantee,
needs convexity of constraint functions;
» reformulation of chance-constraint via appropriate uncertainty bounds;

needs solvability of the robust problem within the given bounds.
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Reaching tractability, scalability & interpretability . .. 1: LIEGE
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The present status

P existing proposals bring the problem closer to the “decomposable” format of the
classical SCOPF;

» limitations on potential for advanced physical modeling (discrete actions,
non-linearity /non-convexity);

» sacrificing the recourse cost expectation from the problem statement;

» modeling cost expectation over the (low probability) constraint violating instances
not straightforward,;

P let's not underestimate the extended problem size.
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Part |
» Challenges towards tractable, scalable & interpretable probabilistic SCOPF.

Part Il

» Ongoing research ideas on leveraging machine learning techniques.
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Target of machine learning application % * LIEGE
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Facilitate the modeling/incorporation of the following two terms in the multi-period
SCOPF formulation

T

Colup) = Bw 3 Y~ crlup, tir(t, up, w(t))

t=7

Ha(“p) = Py {ha(upv u,w) > h,}

We assume that we have a generative model for w from which we can sample “easily”,
and a real-time operation simulator which given u, and w computes the trajectory
induced by u,, the recourse costs ¢,, and the value of the acceptability function h,.

E. Karangelos & L. Wehenkel (ULiege) 16/ 26 Energy Systems & Optimization 2019



Data base generation (from [6]) “’!Lléeg

DA operation DA decisions
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Batch-mode supervised learning for C.(up) % LIEGE
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From a dataset: {(x',y")}¥ | with
> inputs (x): x' = (u;;, w'), sampled*) over U, x W
> outputs (y): y' =3, c(t, ul, w')), calculated by the real-time simulator

(*) w' is ‘naturally and easily’ sampled from generative model of uncertainties over W; u"', sampling scheme
has to be designed to search the “interesting” part of U, given the optimization problem.

A. Build a proxy & (up, w) =~ 32/ c/(t, up, w) such that

A

¢, is accurate enough, given the accuracy of the real-time simulator

A

&, is much faster to evaluate than the real-time simulator

A

¢, is interpretable wrt physical understanding

vvyYyy

¢y is ‘optimizable’ wrt u,
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Batch-mode supervised learning for C.(up) % LIEGE

From a dataset: {(x',y")} | with
> inputs (x): x' = (u;;, w'), sampled*) over U, x W
> outputs (y): y' =3, c(t, ul, w')), calculated by the real-time simulator

(*) w' is ‘naturally and easily’ sampled from generative model of uncertainties over W; u"', sampling scheme
has to be designed to search the “interesting” part of U, given the optimization problem.

B. Build a proxy C,(up) ~ Ew{>}]__c(t, up, w)}
C, is accurate enough, given the accuracy of the real-time simulator

A

>
> Cis interpretable wrt physical understanding
>

- is optimizable wrt u,
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Some first results about this line of research [6,7, 8] % # LIEGE
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» Relation between w and & (up, w) can be learned for fixed u, with sufficient
accuracy with a sample of a few thousand (/) of simulated trajectories, both with
random forests and neural nets, both methods being complementary [6].

» However, the so-learned & (up, w) is typically biased in an unpredictable way,
hence in order to estimate the Ejy to get CA",(up), Monte-Carlo estimation with
control variates correction is needed (to correct for bias). This still allows to
reduce computational requirements by a factor of about 10 wrt to crude MC [7].

» Relation between both u, and w and c,(up, w) can as well be learned with a
reasonable budget N of simulated trajectories [8]. The resulting model may be
used to rank a set of candidate decisions up, according to their induced C,(up).
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Ranking of inputs in terms of impact on recourse cost [6] vLIEGE
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Ranking of inputs in terms of impact on recourse cost [0]
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Reduction of computational requirements [7]
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Some ideas for further work % # LIEGE
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» Evaluate the possibility of directly learning C,(up), instead of learning c,(up, w)
and then averaging out w via MC.

» Develop stochastic optimization algorithms to simultaneously learn C, and
optimize for up.

» Study the learning of the H, function, and how to incorporate its result in
learning-optimization frameworks.

» Develop constraint generating algorithms using A, to produce scenarios useful in
robust-optimization settings.
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Thank you for your attention!

{e.karangelos;|.wehenkel}Quliege.be
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