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Background

Probabilistic Security Constrained Optimal Power Flow (pSCOPF)

I Recent motivation in the growth of operational & planning uncertainties [1];

I Risk-based operation:

I beyond the N-1 contingency list;

I modeling & managing contingency probability & potential impact.

I Planning under uncertainty:

I beyond the point-forecast of power injections;

I accomodating uncertainty from renewable power generation.

I In both classes, problem complexity escalates vs the deterministic standard.
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Background

Machine Learning (ML)

I Recent boom driven by emergence of new ideas &
techniques, enhanced computational infrastructure
and sharing culture;
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I Early power system applications date back to 70s and 80s in the context of
security assessment & control;

I Since then, significant progress in terms of academic publications but moderate
adoption in industrial practice;

I Untapped potential to overcome outstanding challenges for pSCOPF?
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Presentation Outline

Part I
I Challenges towards tractable, scalable & interpretable probabilistic SCOPF.

Part II

I Ongoing research ideas on leveraging machine learning techniques.
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Our target problem: multi-period planning under uncertainty

At some moment t0, in advance of a planning horizon [τ . . .T ]

I Choosing a planning decision up ∈ Up in advance,

I while anticipating exogenous uncertainties w(τ, . . . ,T ) ∈ W and modeling the
recourse actions ur (τ, . . . ,T ) reacting to them during the horizon,

I so that the system will be functional during [τ . . .T ], with high enough probability.

up

W

ur (t)
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The classical (single period, deterministic) SCOPF problem

I Horizon short enough to assume power injections & demands known with
certainty (∼ 5′ − 30′);

I uncertainty limited to a finite set of credible contingencies;

? contingency set expresses desirable level of confidence in maintaining functionality;

I scope is to choose preventive (pre-contingency) controls in advance;

+ while modeling corrective (post-contingency) control possibiliies per contingency;

I technical constraints on the system (steady-state) behavior through all credible
pre- to post-contingency trajectories.
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Already a difficult and large scale MINLP

I Non-linear, non-convex steady-state AC power flow equations;

I pre-/post-contingency constraints on state & decision variables (e.g. loss of load
is unacceptable);

I continuous (e.g gen.dispatch) and discrete (e.g. topology) controls;

I conditional (rule-based) behavior of active components (e.g., PSTs, generation
PV-PQ switching, etc.);

I full statement can turn out as large & complex as one wishes . . .

I indicative single-period European instance has ∼ 300M variables, 400M
inequalities, 200 M equalities;

I in practice the goal is a “good feasible” rather than a “globally optimal” solution.
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Determinstic SCOPF state-of-the-art

Iterative approach

I Master SCOPF vs a few filtered
contingencies & constraints;

I contingency analysis evaluates the fitness
of SCOPF outcome;

I if NOK, filtering grows the set of
contingencies & constraints seen by the
master SCOPF;

I until there is no post-contingency state
with constraint violations.

Master SCOPF

Contingency Analysis
(OPF/PF)
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Why decompose?

Tractability

X opportunities for parallelization, network reduction, advanced filtering, etc.;

X reported solutions in meaningful computational time [2].

Scalability

X binding contingencies/constraints grow moderately with the system size.

Interpretability

X cause-effect associations between filtered contingencies/constraints and updates
on decision variables.
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The multi period stochastic problem components

Up[τ, . . . ,T ]: space of candidate planning decisions up
(e.g., generation dispatch, topology, protection settings, etc.);

W[τ, . . . ,T ]: space of exogenous uncertainty trajectories
(i.e., renewable generation, demand, component failures, etc.);

u̇r (t, up,w(t)): given functional form of the recourse control policy
(e.g., control room operation, 1ary+2ary frequency response, etc.);

ha(up, u̇r ,w): acceptability of system trajectories through [τ, . . . ,T ]
(e.g., given current flow limits, voltage limits, etc.);

Cp(·): first-stage cost function of a choice of up.

cr (·, ·): recourse cost as implied by up and u̇r .
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Probabilistic multi-period SCOPF statement

min
up∈Up

[
Cp (up) + λEW

{
T∑

t=τ

cr (up, u̇r (t, up,w(t)))

}]
,

subject to (chance constraint):

PW {ha(up, u̇r ,w) ≥ ha} ≥ 1− ε.

I Recourse cost expectation balanced with planning decision cost;

I chance-constraint to keep the system functional with high enough probability;

I can be tuned from highly risk averse to purely enonomic objective.
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Probabilistic multi-period SCOPF statement

min
up∈Up

[
Cp (up) + λEW

{
T∑

t=τ

cr (up, u̇r (t, up,w(t)))

}]
,

subject to:

PW {ha(up, u̇r ,w) ≥ ha} ≥ 1− ε.

I Chance-constraint & objective not directly decomposable over trajectories;

I recourse cost expectation challenging wrt “feasibility over optimality” approach.
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Chance-constrained SCOPF state-of-the-art

Analytical reformulation [3]

I Individual (i.e., per constraint) violation probability limits reformulated as tighter
deterministic constraint margins to accommodate injection uncertainty;

? needs linear impact of uncertainty on the system operation (e.g., 1st order Taylor
expansion for AC power flow).

Scenario theory [4, 5]

I Sample average approximation with joint constraint violation probability
guarantee;

? needs convexity of constraint functions;

I reformulation of chance-constraint via appropriate uncertainty bounds;

? needs solvability of the robust problem within the given bounds.
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Reaching tractability, scalability & interpretability . . .

The present status

I existing proposals bring the problem closer to the “decomposable” format of the
classical SCOPF;

I limitations on potential for advanced physical modeling (discrete actions,
non-linearity/non-convexity);

I sacrificing the recourse cost expectation from the problem statement;

I modeling cost expectation over the (low probability) constraint violating instances
not straightforward;

I let’s not underestimate the extended problem size.
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Presentation Outline

Part I

I Challenges towards tractable, scalable & interpretable probabilistic SCOPF.
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I Ongoing research ideas on leveraging machine learning techniques.
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Target of machine learning application

Facilitate the modeling/incorporation of the following two terms in the multi-period
SCOPF formulation

Cr (up) =̇ EW

{
T∑

t=τ

cr (up, u̇r (t, up,w(t))

}

Ha(up) =̇ PW {ha(up, u̇r ,w) ≥ ha}

We assume that we have a generative model for w from which we can sample “easily”,
and a real-time operation simulator which given up and w computes the trajectory
induced by u̇r , the recourse costs cr , and the value of the acceptability function ha.
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Data base generation (from [6])

DA operation 
planning

Monte-Carlo 
Simulations

Real-time 
operation

Database

DA decisions

Realisations

Forecast

DA uncertainty 
models inputs outputs

Trajectories

Trajectory generator
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Batch-mode supervised learning for Cr(up)

From a dataset: {(x i , y i )}Ni=1 with

I inputs (x): x i = (uip,w
i ), sampled(∗) over Up ×W

I outputs (y): y i =
∑

t cr (t, uip,w
i )), calculated by the real-time simulator

(∗) w i is ‘naturally and easily’ sampled from generative model of uncertainties over W; uip sampling scheme
has to be designed to search the “interesting” part of Up given the optimization problem.

A. Build a proxy ĉr (up,w) ≈
∑T

t=τ cr (t, up,w) such that

I ĉr is accurate enough, given the accuracy of the real-time simulator

I ĉr is much faster to evaluate than the real-time simulator

I ĉr is interpretable wrt physical understanding

I ĉr is ‘optimizable’ wrt up
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Batch-mode supervised learning for Cr(up)

From a dataset: {(x i , y i )}Ni=1 with

I inputs (x): x i = (uip,w
i ), sampled(∗) over Up ×W

I outputs (y): y i =
∑

t cr (t, uip,w
i )), calculated by the real-time simulator

(∗) w i is ‘naturally and easily’ sampled from generative model of uncertainties over W; uip sampling scheme
has to be designed to search the “interesting” part of Up given the optimization problem.

B. Build a proxy Ĉr (up) ≈ EW{
∑T

t=τ cr (t, up,w)}
I Ĉr is accurate enough, given the accuracy of the real-time simulator

I Ĉr is interpretable wrt physical understanding

I Ĉr is optimizable wrt up
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Some first results about this line of research [6, 7, 8]

I Relation between w and ĉr (up,w) can be learned for fixed up with sufficient
accuracy with a sample of a few thousand (N) of simulated trajectories, both with
random forests and neural nets, both methods being complementary [6].

I However, the so-learned ĉr (up,w) is typically biased in an unpredictable way,
hence in order to estimate the EW to get Ĉr (up), Monte-Carlo estimation with
control variates correction is needed (to correct for bias). This still allows to
reduce computational requirements by a factor of about 10 wrt to crude MC [7].

I Relation between both up and w and cr (up,w) can as well be learned with a
reasonable budget N of simulated trajectories [8]. The resulting model may be
used to rank a set of candidate decisions up according to their induced Cr (up).
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Ranking of inputs in terms of impact on recourse cost [6]

0.00 0.05 0.10 0.15 0.20

Feature importance

Market output gen 14

Line 16 status

Total load

Line 18 status

Line 14 status

Wind farm 1

Net load

Line 22 status

Market output gen 13

Wind farm 4

Load 11

Load 6

Hour

Min production

Nb of lines unavailable

Bus 18 Bus 21
Bus 22

Bus 17

Bus 16

Bus 23

Bus 20
Bus 19

Bus 15

Bus 14

Bus 13

Bus 24 Bus 11 Bus 12

Bus 3 Bus 9 Bus 10

Bus 6

Bus 8

Bus 5Bus 4

Bus 1 Bus 2 Bus 7

33

26

27

28

25

23

31

3229

30

24

19 18

20
21

22

16
17

13

14

15

2

3

1

9

6

7

5

10

12

11

8

4

t1 t2 t4 t3 t5

Legend:

generating
units

bus load transformer cable wind farm
( 200MW )

192MW 192MW 300MW

591MW

215MW

synch.
cond.

155MW

400MW 400MW
300MW

660MW

common
outage

1

2

3

8

9

1 2

3

4

5

6

7
8

109

11

13
12

14
16 17

15

1 - 4 4 - 8 9 - 11

12 - 14

15

16 - 21

22

23
24 25 - 30

31 - 33

4

5

6 7
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Reduction of computational requirements [7]
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Some ideas for further work

I Evaluate the possibility of directly learning Cr (up), instead of learning cr (up,w)
and then averaging out w via MC.

I Develop stochastic optimization algorithms to simultaneously learn Cr and
optimize for up.

I Study the learning of the Ha function, and how to incorporate its result in
learning-optimization frameworks.

I Develop constraint generating algorithms using Ĥa to produce scenarios useful in
robust-optimization settings.
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Thank you for your attention!

{e.karangelos;l.wehenkel}@uliege.be
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