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Reliability management

▶ Making decisions under uncertainty, from long-term system
development to real-time system operation.

▶ A reliability criterion sets the basis to determine whether or
not the system reliability is acceptable.
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Real-time operation reliability management

Horizon: (5’ ∼ 15’)

▶ Power injections assumed relatively predictable.

▶ Uncertainty on:

→ occurrence of contingencies c ∈ C;

→ behavior of post-contingency corrective controls b ∈ B.

▶ Decisions to:

→ apply preventive (pre-contingency) control u0 ∈ U0(x0) ?

→ prepare post-contingency corrective controls
uc ∈ Uc (u0)∀c ∈ C?
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Transitions of the system state

Preventive
Post-contingency Corrective

∀c ∈ C ∀c , b ∈ C × B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uc ∈ Uc(u0)
↓ •

u0 ∈ U0 • •
↓ ↗ • ↗ •
• πc(w0) • πb(w0) •
x0 ↘ • ↘ •

• •
xc •

xbc
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w0: spatial/temporal correlation in transition probabilites.
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Security Constrained Optimal Power Flow

The N-1 approach

▶ Maintain stable equilibrium (system operational limits)
following any single outage,

▶ but, how to rely on uncertain corrective control?

→ don’t, since it may fail (conservative)?

→ do, just neglect failure (risk-prone)?

Conservative Risk-prone
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Security Constrained Optimal Power Flow

The probabilistic approach

▶ Maintain stable equilibrium (system operational limits), at
least with a certain confidence,

→ so that the joint probability of violating operational limits
remains below a tolerance ε ∈ [0, 1].

Conservative Risk-prone

ε = 0 ε = 1

Probabilistic
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Steady-state operational limits

▶ AC power flow (rectangular coordinates);

▶ voltage magnitude bounds per node;

▶ voltage angle difference & apparent power flow bounds per
branch;

→ less restrictive for the intermediate problem stage;

▶ active & reactive power generation bounds per unit;

→ ramping restrictions between preventive & corrective active
power dispatch;

▶ voltage set-points per unit;

▶ no loss of load.

E. Karangelos (ULg) An iterative approach AC-SCOPF with corrective control failure & probabilistic guarantee 18/10/19 9/ 1



State-of-the-art determinstic-constrained problem

min
u∈U

CP(x0, u0) (1)

h0(x0, u0) ≤ 0; (2)

hsc(xc , u0) ≤ 0 ∀c ∈ C; (3)

hc(x
w
c , uc) ≤ 0 ∀c ∈ C; (4)

u ∈ U ≡{u0 ∈ U0(x0); uc ∈ Uc(x0, u0, c)∀c ∈ C}. (5)

▶ Minimizing the cost of preventive operation (??);

▶ h· (x·, u·) groups all operational limits for preventive,
intermediate and corrective stage (?? - ??);

▶ only for perfectly working corrective controls (xwc );

▶ preventive & corrective decisions are coupled (??).
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Our chance-constrained problem

min
u∈U

CP(x0, u0) +
∑
c∈C

πc · CC (x0, u0, c , uc); (6)

h0(x0, u0) ≤ 0; (7)

P
{

hsc(xc , u0) ≤ 0
hc(x

b
c , uc) ≤ 0

∣∣∣∣ (c , b) ∈ C × B
}

≥ 1− ε; (8)

u ∈ U ≡{u0 ∈ U0(x0); uc ∈ Uc(x0, u0, c)∀c ∈ C}. (9)

▶ Also includes expectation of corrective stage costs (??);

▶ post-contingency operational limits to hold at least with
(1− ε) probability (??);

▶ taking into account contingency occurrence probabilities &
corrective control behavior probabilities.
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Chance-constraint reformulation – step one

P
{

hsc(xc , u0) ≤ 0
hc(x

b
c , uc) ≤ 0

∣∣∣∣ (c , b) ∈ C × B
}

≥ 1− ε;

▶ LH-side measures the probability of all post-contingency
stages meeting operational constraints;

▶ introducing indicator function I(x0, u0, c , uc , b) to show
post-contingency constraint violations,

I(x0, u0, c , uc , b)=


1 ≡ {hsc(xc , u0) ̸≤ 0 ∨ hc(x

b
c , uc) ̸≤ 0}

0 ≡ {hsc(xc , u0) ≤ 0 ∧ hc(x
b
c , uc) ≤ 0}

.
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Chance-constraint reformulation – step one

P
{

hsc(xc , u0) ≤ 0
hc(x

b
c , uc) ≤ 0

∣∣∣∣ (c , b) ∈ C × B
}

≥ 1− ε;

▶ introducing indicator function I(x0, u0, c , uc , b) to show
post-contingency constraint violations,

I(x0, u0, c , uc , b)=


1 ≡ {hsc(xc , u0) ̸≤ 0 ∨ hc(x

b
c , uc) ̸≤ 0}

0 ≡ {hsc(xc , u0) ≤ 0 ∧ hc(x
b
c , uc) ≤ 0}

,

▶ when sets of contingencies and corrective control behaviors
are discrete, one may re-write the chance-constraint as,

1−
∑
c∈C

πc
∑
b∈B

πb
c · I(x0, u0, c , uc , b) ≥ 1− ε.
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Our chance-constrained problem

min
u∈U

CP(x0, u0) +
∑
c∈C

πc · CC (x0, u0, c , uc); (10)

h0(x0, u0) ≤ 0; (11)

1−
∑
c∈C

πc
∑
b∈B

πb
c · I(x0, u0, c, uc , b) ≥ 1− ε; (12)

u ∈ U ≡{u0 ∈ U0(x0); uc ∈ Uc(x0, u0, c)∀c ∈ C}. (13)

▶ Reformulated chance-constraint (??) sums the indicator
function over all contingencies & corrective control behaviors!
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Chance-constraint reformulation – step two

P
{

hsc(xc , u0) ≤ 0
hc(x

b
c , uc) ≤ 0

∣∣∣∣ (c , b) ∈ C × B
}

≥ 1− ε;

▶ Intermediate stage constraints need to hold to keep the
system functional;

▶ we can partly replace indicator function I(x0, u0, c , uc , b) with
auxiliary binary variables (pc ∈ [0; 1]) relaxing these
constraints,

hsc(xc , u0) ≤ pc ·M, ∀c ∈ C, (14)

with M being a sufficiently large constant.
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Chance-constraint reformulation – step two

P
{

hsc(xc , u0) ≤ 0
hc(x

b
c , uc) ≤ 0

∣∣∣∣ (c , b) ∈ C × B
}

≥ 1− ε;

▶ In a cost minimization context, corrective control would only
be selected when needed;

▶ that is, to alleviate some post-contingency constraint
violation;

▶ when corrective control doesn’t work, we’d have constraint
violations;

▶ hence, every post-contingency stage with corrective actions
contributes to the sum appearing in the LH-side of the chance
constraint (??).
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Chance-constraint reformulation – step two

▶ Every post-contingency stage with corrective actions
contributes to the sum appearing in the LH-side of the chance
constraint (??);

▶ we can partly replace indicator function I(x0, u0, c , uc , b) with
auxiliary binary variables (ic ∈ [0; 1]) showing the use of
post-contingency corrective controls;

I(x0, u0, c , uc , b) ≡


hsc(xc , u0) ≤ pc ·M
hc(x

w
c , uc) ≤ 0

|u0 − uc | ≤ ic ·M
ic ∈ [0; 1]

 ,∀c ∈ C, (15)

with M being a sufficiently large constant.
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Our chance-constrained problem

min
u∈U

CP(x0, u0) +
∑
c∈C

πc · CC (x0, u0, c , uc); (16)

h0(x0, u0) ≤ 0; (17)

hsc(xc , u0) ≤ pc ·M, ∀c ∈ C, (18)

hc(x
w
c , uc) ≤ 0, ∀c ∈ C, (19)

1−
∑
c∈C

πc · [pc + (1− πw
c ) · ic ] ≥ 1− ϵ; (20)

|u0 − uc | ≤ ic ·M, ∀c ∈ C, (21)

ic + pc ≤ 1,∀c ∈ C, (22)

ic , pc ∈ [0; 1],∀c ∈ C, (23)

u ∈ U ≡{u0 ∈ U0(x0); uc ∈ Uc(x0, u0, c)∀c ∈ C}. (24)

▶ Additional coupling constraints and binary vars (??,??-??).
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Algorithm motivation

The deterministic-constrained problem

▶ Optimistic attitude towards corrective control failures;

▶ a large-scale Mixed-Integer Non-Linear Programming
(MINLP) problem;

▶ state-of-the-art solution approach is contingency filtering.

Our chance-constrained problem

▶ Reformulated as a MINLP;

▶ includes constraints from the optimistic version and then some
more;

▶ how can we adapt contingency filtering schemes?
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Solution principle

▶ Any chosen decision partitions the contingency set . . .

Preventive
Only
CP

Preventive &
Corrective

CC

Not Secured
CX =

C \ (CC ∪ CP)

+ we get a lower-bound for the probability of interest;

P
{
. . .

}
≥ 1−

∑
c∈CX

πc +
∑
c∈CC

πc · πf
c

 ,

e.g., P
{
. . .

}
≥ 1 when all cntgcies are in preventive only.
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Solution principle

▶ What if we grow secured contingency sub-sets CP , CC?

Preventive
Only
CP

Preventive &
Corrective

CC

Not Secured
CX =

C \ (CC ∪ CP)

▶ we could push the probability lower-bound upwards,

P
{
. . .

}
≥ 1−

∑
c∈CX

πc +
∑
c∈CC

πc · πf
c

 ,

▶ until the actual probability value grows large enough.
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Algorithmic decomposition overview

In a nutshell

1 update decisions vs
deterministic constraints;

2 evaluate post-contingency
violation probability;

3 update contingency subsets;

▶ preventive only;

▶ preventive & corrective;

– stop when reliability target is
OK.

SCOPF (deterministic-constrained)

u0 vs CC ∪ CP ;uc∀c ∈ CC

Contingency Analysis

I(x0, u0, c, uc, b) ∀(c, b) ∈ (C \ CP)× B

Chance Constraint Evaluation

Contingency Filtering

CC, CP

NOYES

End

∑
c∈C πc

∑
b∈B π

b
c · I(x0, u0, c, uc, b) ≤ ε ?

: update operator

initialize CP = CC = ∅
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Algorithm components

Deterministic SCOPF
▶ standard IPOPT implementation vs given contingency subsets;

Contingency analysis

▶ examining both the working & failing behavior of corrective
controls;

▶ per contingency & cc behavior, minimization of fictitious
active/reactive power injections;

▶ returns a zero optimal value for feasible OPF instances;

▶ non-zero objective indicative of the magnitude of constraint
violations implied by the contingency & cc behavior.
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Contingency filtering variants

Probability-based (Pb)

▶ returns the most probable constraint-violating
post-contingency stage (e.g., immediately after contingency
14, after contingency 42 and cc failure, etc.).

Feasibility-based (Fb)

▶ returns the most severe constraint-violating post-contingency
stage (e.g., immediately after contingency 14, after
contingency 42 and cc failure, etc.).

Risk-based (Rb)

▶ blends the former two, ranking post-contingency stages in
probability × severity.
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Contingency subset updating rule

▶ the goal is to push the lower bound on the constraint violation
probability;

▶ we always tighten the security status of the filtered
contingency:

c ∈ CX → c ∈ CC : from not secured, to correctively &
preventively secured;

c ∈ CC → c ∈ CP : from correctively & preventively secured,
to preventively only secured;

▶ that is, make the contingency set partitioning more
conservative.
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The test-case

▶ 111 single component outages;

▶ Corrective control failure probability assumed 0.01.
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Deterministic-constrained SCOPF

Prev.

Prev/Cor.

Total Cost ($) 881.62
Explicit Contingencies 4

Violation Probability 1.91 · 10−5 (ex-post)
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Chance-constrained SCOPF (ε = 10−5)

Prev.

Prev/Cor.

Probability

Prev.

Prev/Cor.

Feasibility

Prev.

Prev/Cor.

Risk

Filter Probability Feasibility Risk

Total Cost ($) 892.37 896.78 892.37
Explicit Contingencies 13 5 7

Chance level 9.85 · 10−6 5.28 · 10−6 9.85 · 10−6
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Chance-constrained SCOPF (ε = 10−5)

Filter Probability Feasibility Risk

Total Cost ($) 892.37 896.78 892.37
Explicit Contingencies 13 5 7

Chance level 9.85 · 10−6 5.28 · 10−6 9.85 · 10−6

▶ More reliable solutions naturally more costly!

▶ risk-based filter returns the same solution & a sub-set of the
cntgcies filtered by the probability-based;

▶ feasibility-based filter is more efficient (only 5 explicity
cntgcies) yet more conservative (cost & chance-constraint
level).
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Chance-constrained SCOPF (ε = 10−5)

Probability Feasibility Risk
0

500

1000

1500

2000

Total time (sec)

SCOPF

Asses.

Probability

SCOPF
Asses.

Feasibility

SCOPF
Asses.

Risk
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The story so far . . .

▶ The probability-based filter is outperformed:

→ since all probabilities here are exogenous params, it carries no
physical information;

→ careful before generalizing to a different context (e.g. when cc
failure probability depends on the chosen actions);

▶ the question of feasibility- vs risk-based filtering is open:

→ feasibility-based is slightly more conservative;

→ risk-based solves slightly slower;

▶ demonstrated results verified through sensitivity analysis (see
full paper).
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3 additional test-cases

▶ Taking into account weather impact on outage probabilities;

▶ assuming adverse weather hits any one of the system areas.
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Feasibility-based filtering

Prev.

Prev/Cor.

▶ Contingency filtering unaffected by occurrence probability.

Adverse Weather Area A Area B Area C

Total Cost ($) 899.62
Explicit Contingencies 6

Violation Probability 9.56 · 10−6 9.84 · 10−6 9.71 · 10−6
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Risk-based filtering

Prev. Prev/Cor.

Area A (Adverse A)

Prev. Prev/Cor.

Area B (Adverse A)

Prev.

Prev/Cor.

Area C (Adverse A)

Prev.

Prev/Cor.

Area A (Adverse B)

Prev. Prev/Cor.

Area B (Adverse B)

Prev.

Prev/Cor.

Area C (Adverse B)

Prev.

Prev/Cor.

Area A (Adverse C)

Prev.

Prev/Cor.

Area B (Adverse C)

Prev.

Prev/Cor.

Area C (Adverse C)
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Risk-based filtering

Adv. A Adv. B Adv.C0

200

400

600

800

1000

$

(a.) Economic cost

risk
feasibility

Adv. A Adv. B Adv.C0

2

4

6

8

10 (b.) Chance constraint level (e-6)

risk
feasibility

Adv. A Adv. B Adv.C0

2

4

6

8

10

12 (c.) Algo iterations 

risk
feasibility

▶ Feasibility-based filtering more robust w.r.t. the adverse
weather.
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Wrap-up

What?
▶ Practical algorithmic framework for chance-constrained mgmt

of operational uncertainties in AC-SCOPF;

Why?

▶ Post-contingency corrective controls not 100% reliable;

▶ acknowledging threat explicitly & adopting a tolerance level;

▶ decision making problem is a slightly more complex variant of
the classical AC-SCOPF;

▶ solution remains understandable & interpretable.
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Future work on computational efficiency

SCOPF

Asses.

Probability

SCOPF
Asses.

Feasibility

SCOPF
Asses.

Risk

▶ Assessment workload is the computational bottleneck;

▶ first opportunity to reduce computational times is
parallellization;

▶ the more interesting is machine learning: predicting the
objective of the single-contingency OPF problems.
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Taking the story forward

How to apply this in practice?

▶ data collection & models;

▶ integration in operational practices as complex as any SCOPF
variant;

▶ things are happening :)

How to apply this in other time-horizons?

▶ On-going work in planning vs power injection uncertainties.
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Implementation details & full results

E. Karangelos and L. Wehenkel,

“An iterative AC-SCOPF approach managing the contingency
and corrective control failure uncertainties with a probabilistic
guarantee”,

in IEEE Transactions on Power Systems, vol. 34, no. 5, pp.
3780-3790, Sept. 2019.

http://hdl.handle.net/2268/233474
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Thanks for your attention
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