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1. Background & motivation
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Research theme

Power
(MW)

Time

I Renewable power generation is intermittent and uncertain!

I How to make the most of what the HV transmission grid has to offer?
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Using the grid to survive intermittency?

I Wider transmission system interconnections allow sharing of reserve/balancing
resources between the multi-area grid System Operators (SOs).
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Using the grid to survive uncertainty?

G

G

D

D

I Grid flexibility allows managing power flow through active grid components, e.g.,
I topology optimization: line-switching, bus-splitting merging;
I phase-shifting transformers.
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Grid flexibility – e.g. topology optimization [1]

I Controlling power flow through the bus incidence.

θa = θbfab = 0
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Grid flexibility – e.g. phase-shifting transformers [2]

I Controlling power flow through the voltage angle difference.

dθ dθ

≤ dθ ≥ dθ

0

fact fact
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How do we presently use the grid?

Multi-area interconnections
I All control areas are physically linked into a single XL-system.

I Markets reach beyond the (electrical/national) borders of a single control area.

Grid flexibility

I SOs prefer “non-costly” grid flexibility for security management.
I not explicitly modeled in (nodal/zonal) markets. . .

– complexity is beyond the linear/convex assumptions of electricity markets;
– e.g., several binary variables to represent breaker positions at each bus of the

“bus-branch” model;
– redefining risks, locational prices, financial transmission rights, etc..
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Multi-area interconnections & grid flexibility

I It’s all about SO coordination, e.g. [2]

(C) In the short-term, the blue area SO causes an overload in the gray area.

(D) In the long-term, both SOs have invested to go back to (A).
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2. Problem set-up
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Overview

A1 A2 A3

A4A5

B1 B2 B3

B4B5

C1 C2 C3

C4C5

We place ourselves in a post-market timeframe . . .

X Market actors have traded through forward, day-ahead and intra-day markets.

X Market actors have also offered redispatching/balancing resources to SOs.

I SOs have to secure the physical execution of the market transactions.
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Notation

Fixed parameters

ȳ: physical characteristics of the grid (e.g., impedances, thermal ratings, etc.);

m̄: the market positions of the grid users (generators & loads);

Available resources (variables)

r ∈ R(m̄): redispatching generation & load – offered by the market actors;

g ∈ ×A
a=1Ga : intra-area grid flexibility, i.e. breaker positions, PST settings etc.

Grid-state (variable)

x = f (m̄, ȳ, r, g): nodal voltages, power flows, served load demand, etc.;

– over the whole multi-area grid.
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Multi-area security management

Primary mission

I SOs have to secure the physical execution of the market transactions.

X a: the security domain of any single system area.

⇒ x = f (m̄, ȳ, r, g) ∈
⋂A

a=1X a.

Cooperative approach

I Jointly minimizing the costs of resources over the whole system.

CA (x, r, m̄): a mutually acceptable cost function:

– short-run (direct) cost of the resources SOs get from the market participants;

– grid flexibility has negligible short-run costs (e.g., wear & tear).
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Cooperative multi-area system security mgmt

(x?, r?, g?) ∈ arg min
r,g,x

CA (x, r, m̄)

subject to :

x = f (m̄, ȳ, r, g) ∈
A⋂

a=1

X a,

g ∈ ×A
a=1Ga,

r ∈ R(m̄).

(1)

I Considerable research efforts in solving these decision making problems in
centralized/distributed manner (e.g., large-scale SCOPF [3]);

I How to share the multi-area security mgmt cost CA (x?, r?, m̄)?

→ promoting inter-SO coordination to exploit grid flexibility.
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3. Proposed approach
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How to share the multi-area security mgmt cost CA (x?, r?, m̄)?

I Shadow prices of linear programming problems reflect the (locational) value of
securely delivering electricity.

I Security management is a non-linear, non-convex optimization problem;

I Its cost depends on the synthesis of all intra-area grid properties:

– physical parameters ȳ;

– security criteria
⋂A

a=1 X a;

– use of grid flexibility g ∈ ×A
a=1Ga .

I Reflect/reward intra-area grid properties at the inter-SO settlement level!
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How to do that? – counterfactual analysis

What-if . . .

1 we were not restricted by the intra-area physical parameters and security criteria
of any single area?

→ measuring the economic loss due to the fixed intra-area features.

2 we were not sharing the intra-area grid flexibility of any single area?

→ measuring the economic benefit from intra-area grid flexibility sharing.
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Economic loss indicator

What if we were not restricted by the intra-area physical parameters and
security criteria of any single area?

1 Formulate per-area a relaxation of the multi-area security mgmt problem;

– denote its optimal cost CA
(

x?/a, r
?
/a, m̄

)
.

2 Measure the loss with respect to the full problem (1) solution:

La = CA
(

x?/a, r
?
/a,m

)
− CA (x?, r?,m) ≤ 0, (2)

– a relaxation can only lead to a lower/equal optimal cost.

3 Repeat over all areas.
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How to get a relaxation?

A1 B1 B2 B3

B4B5

C1 C2 C3

C4C5

A3

A0

Modeling a control area as an “ideal medium” . . .

I All generators & loads connected to a single super-node;

I all intra-area links have variable impedance & inifinite capacity;

I no intra-area security restrictions and contingency events.
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Economic benefit indicator

What if we were not sharing the intra-area grid flexibility of any single area?

1 Formulate a restriction by modeling a non-cooperative control area;

– denote this optimal cost as CA (x?+a, r
?
+a, m̄

)
.

2 Measure the benefit with respect to the full problem (1) solution:

Ba = CA (x?+a, r
?
+a,m

)
− CA (x?, r?,m) ≥ 0. (3)

– non-zero only if the grid flexibility of an area is also used for the rest of the system.

3 Repeat over all areas.
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How to model a non-cooperative control area?

1 Find how the autonomous SO would use its grid flexibility;

– reducing all external control areas to an “ideal medium”.

2 Restrict to these autonomous decisions & resolve the multi-area problem.

(
x?+a, r

?
+a, g

?
+a

)
∈ arg min

r,g,x
CA (x, r, m̄)

subject to :

x = f (m̄, ȳ, x, r, g) ∈
A⋂

a′=1

X a′ ,

g ∈ ×A
a′=1Ga

′
,

ga = ḡa,

r ∈ R(m̄).

(4)
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Multi-area power system security with grid flexibility

Let’s recap . . .

I It’s all about inter-SO cooperation.

I Security management cost relies on all intra-area grid properties and usage of grid
flexibility.

I Counterfactual analysis to evaluate the economic loss & benefit contributed by
any single area.

I How to use these indicators for inter-SO settlement?

– intra-area settlements at the discretion of local regulation.
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Inter-SO settlement scheme

Net impact indicator

I Summing the economic loss & benefit per area,

Na = La + Ba ∀a ∈ A, (5)

Cost allocation approach

I Areas with positive net impact provide value to the whole system;

→ collect revenues equal to the respective net impact indicators;

I Areas with negative net impact create costs for the whole system;

→ pay security mgmt cost + total positive net impact;

→ pro-rata of negative net impact.
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4. Demonstrative implementation
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Test system overview

A1 A2 A3

A4A5

B1 B2 B3

B4B5

C1 C2 C3

C4C5

I A 3-area system based on the 5PJM matpower case, designed for demonstration;

I 3 identical interconnections, with capacity of 1.5 pu;

I area A has increased marginal generation costs (+200 money pu) and area C has
reduced marginal generation costs (-200 mpu);

I grid flexibility: 2x PST [(A1–A2);(C4–C5)], 3x bus-splitting breakers [B2,B3,B4].
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Preventive/corrective N-1 Security Constrained OPF

I Seeking to avoid loss of load after any single branch outage;

I objective is to minimize generation redispatching cost wrt the market baseline.

I Pre-contingency controls:

– generation redispatching;
– bus splitting/merging;
– PST flow threshold.

I Post-contingency controls:

– bus splitting/merging;
– PST operating mode.

I Mixed-Integer Linear Programming (MILP) problem:

– DC power flow approximation;
– integer variables for grid flexibility.
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Baseline “market” dispatch & redispatching resources

I Baseline dispatch using a DC-OPF subject to interconnection capacity constraints;

I all units offering the available headroom (capacity - market dispatch) as upward
redispatch potential for a marginal generation (fuel) cost;

I and the available floor-room (market dispatch - minimum stable generation) as
downward redispatch potential for free.

E. Karangelos & P. Panciatici ULiège & RTE 28/ 41 PowerHour – 23/04/21



Power flow control through grid flexibility

I Increased use of interconnection capacity (more inter-area congestion).

No Flexibility Grid Flexibility

Contingency Congestion Contingency Congestion
A1 – A4 A4 – A5 A1 – A5 A4 – A5
A1 – A5 A4 – A5 C1 – C4 C4 – C5
B1 – B4 B4 – B5 C1 – C2 C4 – C5
B1 – B5 A4 – B5 C1 – C5 C4 – C5; A3 – C5
A1 – A5 A3 – C5 B1 – B5 A1 – B5

A3 – C5 A1 – B5

Network congestion overview
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Economic value of grid flexibility

I Secure import/export positions closer to the market dispatch.

I Grid flexibility allows to use more the cheap generation from area C.

Cost ($)

Market 43752
SCOPF 25038

SCOPF - No Flex. 29675 (+18.5%)

Multi-area system costs
Net export positions per system area
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Counterfactual analysis (1/2)

What if we were not restricted by the intra-area physical parameters and
security criteria of any single area?

I Area C has the smallest negative impact on the
multi-area system security cost;

– cheap generation is locally available;

I Area A & B indicators relate to securing
interconnections;

– larger evitable costs.
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Counterfactual analysis (2/2)

What if we were not sharing the intra-area grid flexibility of any single area?

I Sharing area B grid flexibility creates value to the
multi-area system;

– SO would autonomously use a different topology;

I Area C grid flexibility serves intra-area purpose.
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Inter-SO cost settlement

Area Net Impact

A -12464
B -5518
C -3935

Net impact indicators

I SOs to pay redispatching costs pro-rata. Cost allocation coefficients
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SO gains from grid flexibility

Security management costs ($)

A smaller share of a smaller cost
I Area B SO gains from the multi-area system security cost reduction;

I and, from the value it creates by sharing its flexibility.
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5. Closing discussion
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Multi-area power system security with grid flexibility

Cooperative approach overview

1 Sharing of all resources & grid flexibilities of the different SO control areas.

– Jointly minimize the multi-area system interconnected security cost.

2 Inter-SO settlement based on each control area impact.

– Counterfactual analysis of each SO costs & benefits to the multi-area system.

3 Intra-area settlements.

– As per the local regulations.
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Cooperative approach for multi-area power system security
with grid flexibility

Why?

I Inter-SO cooperation is necessary to make the most of interconnections & grid
flexibility.

I Inter-SO settlement can provide the incentives . . .

I sharing existing grid flexibility in the short-term;
I mutually beneficial investments on grid flexibility in the long-term.

I Counterfactual analysis is non-marginal;

I no limitations on detailed physical modeling (non-convexities/non-linearities).

I Intra-area settlement rules, hedging products, etc. can be designed in any way.
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Cooperative approach for multi-area power system security
with grid flexibility

From demonstrative to real-life applications

I Computational efficiency of counterfactual analysis steps.

I Short-term winners & losers under the new settlement.

I Long-term rewards & coordinated investment benefits.

I Work-in-progress. . .
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To find out more . . .

Karangelos E, Panciatici P., ‘Cooperative game’ inspired
approach for multi-area power system security management
taking advantage of grid flexibilities.,2021, Phil. Trans. R. Soc.
A 20190426.
http://dx.doi.org/10.13140/RG.2.2.15597.72163
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Thanks for your attention

e.karangelos@uliege.be
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