

Grid-aware Flexibility Aggregation for Zonal Balancing Markets

Efthymios Karangelos & Anthony Papavasiliou

School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.

ICEBERG Interim Workshop, June 14, 2024, Athens, Greece

Efthymios Karangelos and Anthony Papavasiliou,"Grid-aware Flexibility Aggregation for Zonal Balancing Markets", Electric Power Systems Research (2024) – in press.

Cross-border integration for electricity balancing

AI generated image

Source: ENTSO-e website

How is the grid represented?

▶ Balancing market clears at the zonal resolution.

How is the grid represented?

▶ Intra-area **congestion** to be managed by respective TSO.

Available tools to manage intra-area congestion

Ex-ante Bid Filtering

- ► TSO can filter any intra-area bid that is anticipated to cause congestion.
 - X How to do this?
 - Intra-zonal grid constraints hidden from the market?
 - X TSO risk aversion also hidden from the market?

Ex-post Bid Blocking

- ▶ TSO can block & replace any activated intra-area bid to resolve congestion.
 - Only replacing within the same zone causes inefficiencies?

Aggregation/disaggregation approach [1,2,3]

- ► Aggregate intra-zonal resources into a price quantity curve (*ex-ante*).
 - ✓ Communicate both resource & intra-zonal congestion mgmt costs.

▶ Dispatch & settle intra-zonal resources s.t. grid constraints (*ex-post*).

Residual Supply Function (RSF) ex-ante approximation

- ► Given an export volume, minimize intra-area cost s.t. grid constraints.
 - \bigcirc over an export volume range:

Resulting price – quantity curve can be submitted in the zonal market.

Aggregation/disaggregation approach [1,2,3]

Residual Supply Function (RSF) ex-ante approximation

► Given an export volume, minimize intra-area costs s.t. grid constraints.

 \bigcirc to construct a price – quantity curve.

Aggregation/disaggregation approach [1,2,3]

Residual Supply Function (RSF) ex-ante approximation

- ▶ Given an export volume, minimize intra-area costs s.t. grid constraints.
 - \bigcirc to construct a price quantity curve.

Why revisit?

- Incremental export cost depends on uncertain & unobservable factors:
 - realization of imbalances all over the multi-area grid.
 - activation of balancing bids in external control-areas.
 - detailed topologies of external control-areas.
- Represented by a single "best-guess" in [2,3]:
 - ★ comes with the risk that the disaggregation cost may be greater than approximated by the RSF (a.k.a., disaggregation risk).

1. Proposal

Introducing boundary injection changes

Introducing boundary injection changes

- The changes in the interconnector power flows, after the balancing market activations.
- For any given export volume:
 - depend on the unobservable state of external control-areas,
 - also on the precise location of the demand for balancing power,
 - translate into intra-area power flows,
 - also into the minimum cost of exporting the considered volume.
- We consider these a proxy of the external balancing demand.

Proposal

Worst-Case RSF approximation

- Assume a range of boundary injection changes, caused by the balancing market.
- Given any export volume, compute the upper bound of the intra-area minimum export cost within this assumed range.
 - to construct a price quantity curve.

Intuition

Worst-Case RSF approximation

- ► A larger (smaller) range of boundary injection changes implies...
 - a larger (smaller) upper bound on the intra-area minimum export cost,
 - a smaller (larger) disaggregation risk.
- √ WcRSF also communicates the disaggregation risk aversion with the balancing market.

2. Mathematical formulation & solution approach

How to compute the WcRSF approximation?

For any market zone \bar{z} and export volume $e_{\bar{z}}$

```
max {Operating Cost(Zonal Flexibility)};
     s.t.
     Boundary Injection Changes ∈ Plausible Range;
     min {Operating Cost(Zonal Flexibility)};
         s.t.
         Nodal Balance(Boundary Injection Changes, Zonal Flexibility);
         Zonal Flexibility ∈ Limits of Zonal Resources;
         Intra-area power flows ∈ Branch Capacity Limits.
```

Defining a plausible range of boundary injection changes

For any market zone $\overline{z} \in \mathcal{Z}$

 $\mathcal{N}_{a(\overline{z})}$: nodes with interconnectors outside the respective control area.

 ϕ_{nx} : is the boundary injection change towards external node $x \in \mathcal{X}_n^{a(\overline{z})}$.

Defining a plausible range of boundary injection changes

- For any market zone $\overline{z} \in \mathcal{Z}$
 - $\mathcal{N}_{q(\bar{z})}$: nodes with interconnectors outside the respective control area.
 - ϕ_{nx} : is the boundary injection change towards external node $x \in \mathcal{X}_n^{\alpha(\overline{z})}$.
- For any given target export quantity e₂

$$\phi_{nx}^{\min} \le \phi_{nx} \le \phi_{nx}^{\max}, \ \forall n \in \mathcal{N}_{a(\overline{z})}, x \in \mathcal{X}_n^{a(\overline{z})}, \ \text{\# lower/upper bounds}$$
 (1)

$$\sum_{n \in \mathcal{N}_{\sigma(\bar{z})}} \sum_{\mathbf{x} \in \mathcal{X}_{\sigma}^{\sigma(\bar{z})}} \phi_{n\mathbf{x}} = \frac{\mathbf{e}_{\bar{z}}}{\mathbf{e}_{\bar{z}}}. \text{ # net change balances export quantity}$$
 (2)

N.b.: definition of boundary injection bounds to be discussed ...

Minimizing the Intra-area Operating Cost

$$\min_{p,\theta,s} \sum_{b \in \mathcal{B}_{\bar{z}}} c_b \cdot p_b + \sum_{n \in \mathcal{N}_{\sigma(\bar{z})}} pen \cdot \left(s_n^+ + s_n^-\right), \tag{3}$$

subject to:

$$\sum_{b \in \mathcal{B}_n} p_b = \sum_{j \in \mathcal{N}_n} \frac{\theta_n - \theta_j}{X_{nj}} + \sum_{\mathbf{x} \in \mathcal{X}_n^{\sigma(\overline{z})}} \phi_{\mathbf{n}\mathbf{x}} + (\mathbf{s}_n^+ - \mathbf{s}_n^-), \ \forall n \in \mathcal{N}_{\sigma(\overline{z})}, \tag{4}$$

$$p_b^{\mathsf{min}} \leq p_b \leq p_b^{\mathsf{max}}, \ \ \forall b \in \mathcal{B}_{\overline{z}},$$

$$p_b = 0, \ \forall b \in \mathcal{B}_z, \forall z \in \mathcal{Z} \setminus \bar{z} : q(z) = q(\bar{z}),$$

$$-ar{f}_{nj} \leq rac{ heta_n - heta_j}{X_{ni}} + f_{nj}^0 \leq ar{f}_{nj}, orall n, j \in \mathcal{N}_{a(ar{z})}$$

$$s_n^+, s_n^- \ge 0, \forall n \in \mathcal{N}_{q(\overline{z})}.$$
 (8)

(5)

(6)

(7)

How do we solve the Bi-Level Optimization Problem?

- "The global maximum of a convex function over a closed bounded convex set is an extreme point."
 - The optimal value of the lower level (3–8) is piece-wise convex in the upper level decision variable.
 - \checkmark The upper level maximizes a convex function in a closed bounded set (1–2).
- We can just exhaustively evaluate the lower level problem (3−8) over all corner points of (1−2):
 - the number of corner points depends on the number of interconnectors,
 - this is not prohibitively large for typical power grids,
 - it is also trivial to parallelize the solution of the respective linear programs.

The Non-convexity Issue

► The Worst-Case resource aggregation cost (*i.e.*, the optimal value of the Bi-Level problem) is **non-convex in the target export quantity**.

- ► In the PSCC paper, we added logical constraints in the balancing market clearing problem to represent price quantity **ordered bids**.
- Since then, we also developed a translation into exclusive block bids.

3. Results & discussion

The test systems

Chao-Peck example: intra-zonal resource aggregation

Chao-Peck example: intra-zonal resource aggregation

Chao-Peck example: Plausible Boundary Injection Range

Too narrow: WcRSF touches the resource cost curve (a.k.a. merit order).

Too wide: Sharing balancing resources looks infeasible!

Just-right: Recovering the eventual delivery cost for the Activated Quantity.

How to evaluate the WcRSF?

The process (\bigcirc over 1000 samples):

- Generate nodal imbalance sample.
- 1 Clear Zonal Balancing Market given the WcRSF for a zone of study.
- 2 Disaggregate Activated Balancing Quantity s.t. intra-area grid constrains.

How to evaluate the WcRSF?

The process (\bigcirc over 1000 samples):

- Generate nodal imbalance sample.
- Clear Zonal Balancing Market given the WcRSF for a zone of study.
- 2 Disaggregate Activated Balancing Quantity s.t. intra-area grid constrains.

The metrics (average values):

 Q_a : the Activated Balancing Quantity (in MWh).

CD_a: the Disaggregation Cost (in money).

 CO_a : the Activated Offer Cost as per the aggregated offer (in money).

How to evaluate the WcRSF?

The process (over 1000 samples):

- Generate nodal imbalance sample.
- Clear Zonal Balancing Market given the WcRSF for a zone of study.
- 2 Disaggregate Activated Balancing Quantity s.t. intra-area grid constrains.

The metrics (average values):

 Q_a : the Activated Balancing Quantity (in MWh).

CD_a: the Disaggregation Cost (in money).

 CO_a : the Activated Offer Cost as per the aggregated offer (in money).

The alternative: All bids from the zone of study sent to the market (merit order aggregation).

Chao-Peck example – simulation results overview

Average values over 1000 imbalance samples

- A moderate boundary injection range $\pm 0.25\bar{f}$ sufficient to recover the disaggregation cost.
- ▶ Too much risk aversion reduces the competitiveness of the balancing resources.

Nordic test case – simulation results overview

Average values over 1000 imbalance samples

X Even at a very conservative range $(\pm \bar{t})$ there is a negative gap between the average Disaggregation Cost and Aggregated Offer Cost!

Modified Nordic test case

without imbalance realizations within aggregation area

- Grid congestion still possible while sharing balancing resources.
- ✓ the WcRSF hedges correctly against this risk.

Round-up & conclusions

- Flexibility resource aggregation in the context of zonal balancing markets.
- Proposal to evaluate the worst-case intra-area congestion cost over a plausible range of interconnection power flow changes.
- Purpose is to communicate intra-area grid constraints and congestion risk aversion with the market.

Round-up & conclusions

- Flexibility resource aggregation in the context of zonal balancing markets.
- Proposal to evaluate the worst-case intra-area congestion cost over a plausible range of interconnection power flow changes.
- Purpose is to communicate intra-area grid constraints and congestion risk aversion with the market.
- ✓ Given a suitable range, hedging *vs* the risk of costly intra-area congestion.

Round-up & conclusions

- Flexibility resource aggregation in the context of zonal balancing markets.
- Proposal to evaluate the worst-case intra-area congestion cost over a plausible range of interconnection power flow changes.
- Purpose is to communicate intra-area grid constraints and congestion risk aversion with the market.
- \checkmark Given a suitable range, hedging vs the risk of costly intra-area congestion.
 - further work on defining the range from historical data.
 - also on accounting for intra-area uncertainties.

References

- [1] I. Mezghani, N. Stevens, A. Papavasiliou, and D. I. Chatzigiannis, "Hierarchical coordination of transmission and distribution system operations in European balancing markets," <u>IEEE Transactions on Power Systems</u>, 2022.
- [2] A. Papavasiliou, M. Bjørndal, G. Doorman, and N. Stevens, "Hierarchical balancing in zonal markets," in 2020 17th International Conference on the European Energy Market (EEM). IEEE, 2020, pp. 1–6.
- [3] A. Papavasiliou, G. Doorman, M. Bjørndal, Y. Langer, G. Leclercq, and P. Crucifix, "Interconnection of Norway to European balancing platforms using hierarchical balancing," in 2022 18th International Conference on the European Energy Market (EEM), 2022, pp. 1–7.

Case studies – results over importing samples

Logical Constraints for Ordered (price, quantity) Bids

$$q_{k,z} = u_{k,z} \cdot dq_{k,z}^{\max} + dq_{k,z}, \ \forall k \in \mathcal{K}_z, \forall z \in \mathcal{Z}_{\bar{a}},$$

$$0 \leq dq_{k,z} \leq v_{k,z} \cdot dq_{k,z}^{\max}, \forall k \in \mathcal{K}_z, \forall z \in \mathcal{Z}_{\bar{a}},$$

$$v_{k,z} + u_{k,z} \leq u_{k-1,z}, \ \forall k \in \mathcal{K}_z^+, \forall z \in \mathcal{Z}_{\bar{a}},$$

$$v_{k,z} + u_{k,z} \leq u_{k+1,z}, \ \forall k \in \mathcal{K}_z^-, \forall z \in \mathcal{Z}_{\bar{a}},$$

$$\sum_{k \in \mathcal{K}_z} v_{k,z} \leq 1, \forall z \in \mathcal{Z}_{\bar{a}},$$

$$u_{-1,z} + u_{1,z} \leq 1, \ \forall z \in \mathcal{Z}_{\bar{a}},$$

$$v_{k,z}, u_{k,z} \in \{0; 1\}, \ \forall k \in \mathcal{K}_z, z \in \mathcal{Z}_{\bar{a}}.$$

$$(10)$$